

EUROPEAN HEALTHCARE DESIGN 2018

Towards a quantitative sustainability assessment of hospital buildings in Belgium

Milena Stevanovic

Doctoral researcher @KUL Project architect @VK STUDIO Architects, Planners & Designers

June 12th, 2018

Summary

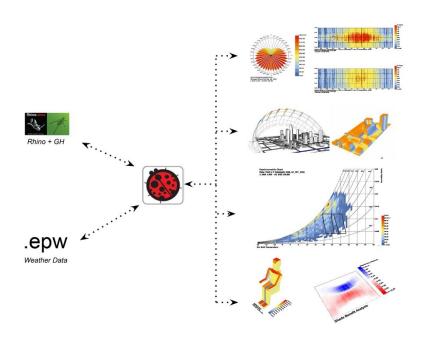
- 1. Objectives
- 2. Methodology
- 3. Tool description
- 4. Results
- 5. Conclusions

Objectives

- develop a new sustainability assessment tool for hospital buildings in Flemish region from the life cycle thinking approach, applicable in the early design phase
- energy consumption calculation using the parametric design in the early design phase

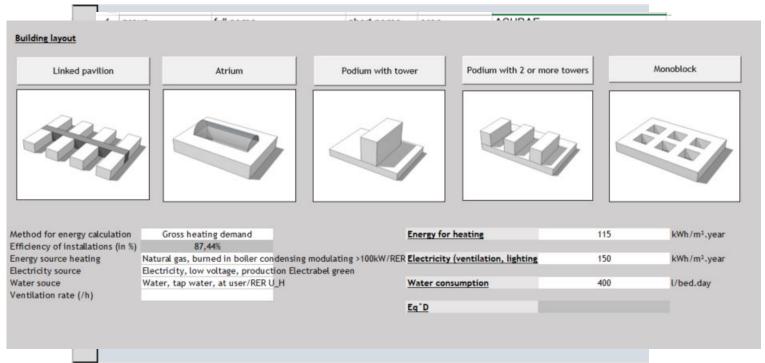
Methodology

- 1. Life cycle assessment (LCA) MMG method converted into an Excelbased tool at the Architectural Engineering division (KUL)
- 2. Life cycle costing (LCC) Excel-based tool developed at the Architectural Engineering division (KUL)



Methodology

3. Parametric design (Rhinoceros + Grasshopper + Honeybee and Ladybug) – energy consumption calculation

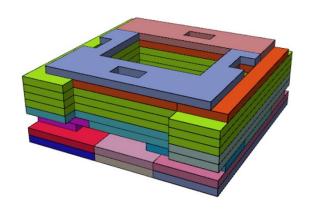


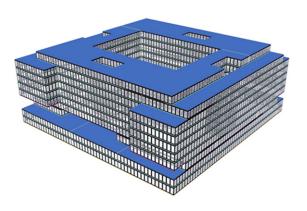
Tool description

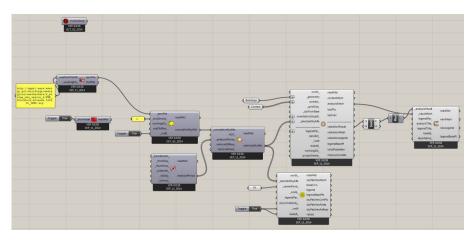
Tool's interface – 2 Excel-based spreadsheets, "Concept" and "one_building_scenario"

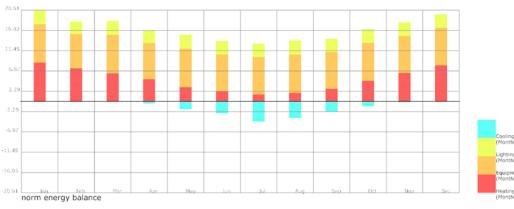
'Rlaincep Graks Hoppend

Tool description

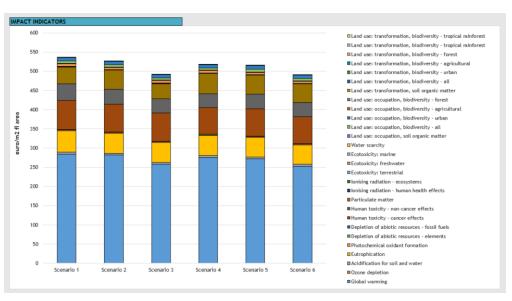

"Concept" dashboard

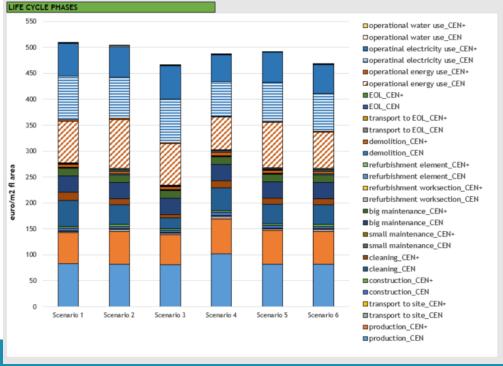

Samuela 4		Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Scenario 1							floor6_argex18_PE_screed cement7
							floor8_argex30_polished concrete-2
Scenario 2							
		Lblw_05_prefab_concrete 14.5 c	Lblw_05_prefab_concrete 14.5 c	Lblw_05_prefab_concrete 14.5 c	Lblw_02_concrete 27 cm	Lblw_05_prefab_concrete 14.5 c	Lblw_05_prefab_concrete 14.5 cm
Scenario 3		EW_16_brick_PUR14_arch concre	EW_15_brick_PUR10_arch concre	EW_01_precast conc 24_PUR12_a	EW_12_concrete block_PUR11_fa	EW_15_brick_PUR10_arch concre	EW_15_brick_PUR10_arch concrete
		Lblw_02_concrete 27 cm	Lblw_04_prefab_concrete 16 cm	Lblw_02_concrete 27 cm	Lblw_04_prefab_concrete 16 cm	Lblw_04_prefab_concrete 16 cm	Lblw_04_prefab_concrete 16 cm
		nLblw_10_gypsum wall 12.5 cm	nLblw_05_sandwich panel 12.5 c	nLbIw_10_gypsum wall 12.5 cm	nLbIw_05_sandwich panel 12.5 c	nLblw_05_sandwich panel 12.5 c	nLblw_05_sandwich panel 12.5 cm
		nLbIw_09_gypsum wall 11 cm	nLblw_11_gypsum wall 15 cm	nLbIw_09_gypsum wall 11 cm	nLbIw_08_gypsum wall 10 cm	nLbIw_11_gypsum wall 15 cm	nLbIw_11_gypsum wall 15 cm
Scenario 4		SF_02_mineral fibre + PVC cover	SF_06_mineral fibre + ceramic til	SF_02_mineral fibre + PVC cover	SF_08_mineral fibre + PVC cover	SF_06_mineral fibre + ceramic til	SF_06_mineral fibre + ceramic tiles
	, S	SF_20_mineral fibre + PVC on cav	SF_18_MDF suspended ceiling + i	SF_20_mineral fibre + PVC on cav	SF_14_mineral fibres + ceramic ti	SF_18_MDF suspended ceiling + i	SF_18_MDF suspended ceiling + ind
	l E	_	_	_	_	staircase_01	staircase_01
Scenario 5	, s	Flat roof_6_green roof - extensiv	Flat roof_03_minerale fibres+con	Flat roof_6_green roof - extensiv	Flat roof_05_MDF+concrete	Flat roof_03_minerale fibres+con	Flat roof_03_minerale fibres+concre
Scenario 5		Concrete column	Concrete column	Concrete column	Concrete column	Concrete column	Concrete column
		PVC_glass1.1	wood painted_glass2.9	ALU_glass1.1	ALU_glass1.1	wood painted_glass2.9	wood painted_glass2.9
		door_01_98 x 211.5	sliding_door_01_123 x 248.5	door_01_98 x 211.5	door_01_98 x 211.5	door_01_98 x 211.5	sliding_door_01_123 x 248.5
Scenario 6							
		AP - REF - high-rise elevator, 20	AP - REF - high-rise elevator, 20	AP - REF - high-rise elevator, 20 sto			
		AP - REF - low-rise elevator, 8 st	AP - REF - low-rise elevator, 8 st	AP - REF - low-rise elevator, 8 st	AP - REF - low-rise elevator, 8 st	AP - REF - low-rise elevator, 8 st	AP - REF - low-rise elevator, 8 stop:
Reset materials							
Reset materials		SFH - REF - electrical services, ca	SFH - REF - electrical services, c	SFH - REF - electrical services, cable			
	Eq°D	0	0	0	0	0	0
nergy for heating and cooling		115	135	115	90	124	100
lectricity (ventilation,	lighting,		140	150	120	135	130
Vater consumption		400	500	400	350	300	298

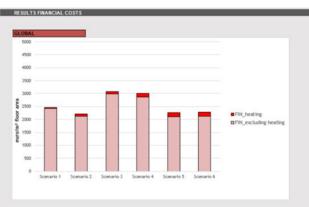


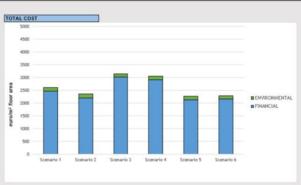

Tool description

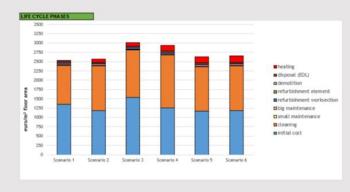
Rhino + Grasshopper + Honeybee + Ladybug

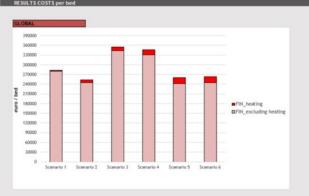




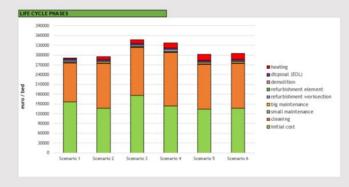

"Concept" dashboard

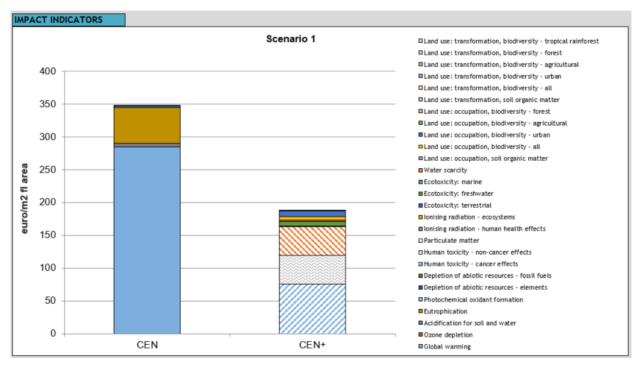


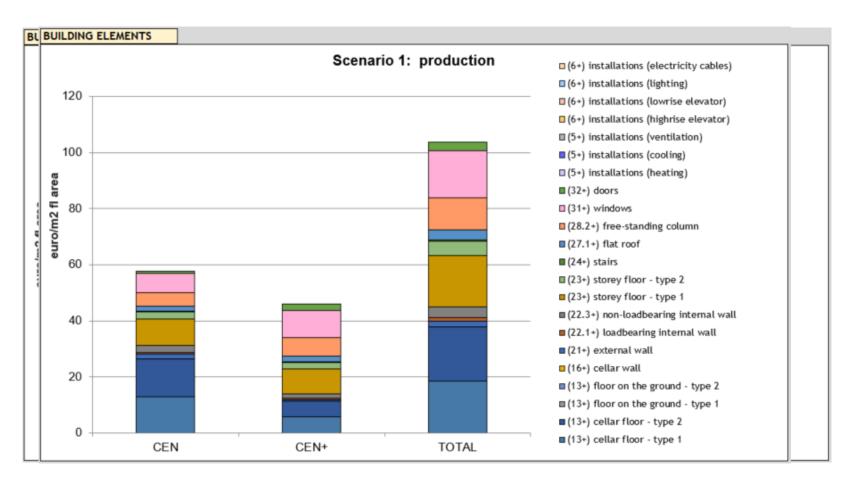




"Concept" dashboard






"one_building_scenario" dashboard

GRAPH PRESENTATION	
VIEW RESULTS analyze life cycle phase	production
analyze monetary impact:	Global warming
analyze impact equivalents:	Global warming
building life span :	30

"one_building_scenario" dashboard

Conclusions and further steps

Developed tool – advantage lies in ability to **apply LCA and LCC** on hospital building from an **early design phase**

Combining with **Rhinoceros** and plugins **Ladybug** and **Honeybee** allows for **modelling the energy consumption** from a **concept phase** – applicable in different climatic contexts

The **combination** of the **LCA**, **LCC** and parametric design for energy calculation - a powerful tool to optimise a hospital building

Conclusions and further steps

Include the electricity calculation (ventilation, lighting, cooling, medical technical equipment)

Refine the energy calculation for spatial heating to be in line with the EPB norms in Flanders

Include the HVAC installations in LCA and LCC analysis

Validation of the developed tool through its application in upcoming competitions

Thank you!

milena.stevanovic@kuleuven.be

Division of Architectural Engineering
Department of Architecture - Faculty of Engineering
Science
KU Leuven
Kasteelpark Arenberg 1 box 2431 | B-3001 Leuven

http://architectuur.kuleuven.be/architectural-engineering

